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Forced dewetting on porous media
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We study the dewetting of a porous plate withdrawn from a liquid bath. The contact
angle is fixed to zero and the flow is assumed to be almost parallel to the plate
(lubrication approximation). The ordinary differential equation involving the position
of the water surface is analysed in phase space by means of numerical integration. We
show the existence of a stationary moving contact line with zero contact angle below
a critical value of the capillary number ηU/γ . Above this value, no stationary contact
line can exist. An analytical model, based on asymptotic matching is developed,
which reproduces the dependence of the critical capillary number on the angle of the
plate with respect to the horizontal (3/2 power law), provided the capillary length is
much larger than the square root of the porous-medium permeability. In addition,
it is shown that the classical lubrication equation leads not only to the well-known
Landau–Levich–Derjaguin films, but also to a family of films for which thickness is
not imposed by the problem parameters.

1. Introduction
When sea retreats from the shore, sand structures appear as solid granular particles

are transported via the liquid. Liquid motion and particularly film retraction on an
erodible medium are known to create impressive erosion patterns, such as sand ripples
for oscillatory waves (Scherer, Melo & Marder 1999; Stegner & Wesfreid 1999) or
sand furrows (Daerr et al. 2003; Schorghofer et al. 2004). The case of liquid retraction
from a granular bed can be understood as a dewetting dynamics on a porous erodible
bed. Such physical phenomena have been reproduced in the laboratory by pulling
a plate covered with a bed of grains out of a liquid bath (Daerr et al. 2003). This
is similar to the well-known experiment investigating a moving contact line on a
non-porous plate (Blake & Ruschak 1979). In this latter case, a contact line exists
for small removal speed U , whereas for higher speed (above a well-defined critical
value Ucr ) a macroscopic water film (the so-called Landau–Levich–Derjaguin (LLD)
film, see Landau & Levich 1942; Derjagin 1943) covers the whole plane (Eggers
2004a). We propose here to investigate this transition for a saturated porous medium,
in connection with recent experiments involving granular materials by Daerr et al.
(2003). There, a motor-driven plane, covered with a granular layer, is withdrawn from
a water tank at constant speed U . The solid plane is tilted to an angle θ . At high
enough velocity, erosion river networks and mudflows are observed, whereas only light
patterns appear at smaller speed. We investigate the loss of a static contact line and
seek to relate it to the transition between various erosion regimes. We therefore seek
the critical velocity above which no static contact line can exist on a granular bed.
Below this critical velocity, almost no grain motion is observed so that we identify
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Figure 1. A porous plate of conductivity k is being withdrawn from a liquid bath with speed
U at angle θ . h, x and y are the non-dimensional counterparts of H , X and Y .

the granular bed with a rigid porous medium. Dewetting on a porous medium has
already been studied in different configurations (see Raphaël & de Gennes 1999;
Aradian, Raphaël & de Gennes 2000; Bacri & Brochard-Wyart 2001 and references
therein). The case of a porous plate removed from a liquid was studied by Raphaël &
de Gennes (1999), but the focus was on the spatial evolution of the LLD film, the
existence of which was assumed. The contact-line dynamics was also studied (Aradian
et al. 2000) on a horizontal porous plate into which a liquid film is sucked. From a
more theoretical point of view, the problem of a moving contact line on a porous solid
is pointed out by de Gennes (1985) as a natural regularization for the contact-line
dynamics equations. The bulk liquid flow through the porous solid indeed removes
the usual stress singularity that would be encountered at a contact line with a no-
slip condition (Dussan V. & Davis 1974). No additional assumption, such as the
introduction of a Navier slip at microscopic scale, is then required. However, another
question arises when considering a porous medium: what is the relevant condition
for the contact angle at the contact line? As discussed below, we propose here for a
saturated system to take a zero contact angle.

The paper is organized as follows. In § 2, we use the lubrication approximation to
deduce the equation for the static interface shape, both for the contact line and a
film solution that does not remove or add water to the tank, hereinafter referred to
as a zero-flux film (a true LLD film has a finite flux, and its equation is different,
see Appendix A). In § 3, we exhibit numerically the transition between these two
configurations as the pulling velocity increases. Then, we propose to interpret the
solutions in the framework of dynamical systems (§ 4).

2. Principles
2.1. Lubrication approximation

Our approach seeks to determine the velocity (if any) above which the static contact
line can no longer exist in a granular bed withdrawal experiment. Below this velocity,
we can consider that the grains barely move with respect to the withdrawn plate. Thus,
the granular material is represented by a non-erodible porous medium (see figure 1)
of permeability k, and we only have to investigate the stationary problem. The fluid is
characterized by its density ρ, viscosity η and surface tension γ . Assuming invariance
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in the Z-direction, we consider the two-dimensional problem where the water surface is
described by the function H (X). At the beginning of the experiment, the porous plate
is saturated with water. For the plate velocities pertinent to the problem (typically
0.5 cm s−1) and the estimated porosity of the granular bed (k ≈ 10−12 m2), we can
consider that the porous medium remains fully saturated with water at any distance
from the free water level.

We will restrict our analysis to small angles θ so that the lubrication approximation
can be employed (i.e. (θ, ‖H ′‖) � 1 where the prime stands for the X-derivative). Only
the X-component u of the velocity has to be taken into account, for which Poiseuille
profile is assumed, with a vanishing tangential stress on the gas side:

∂u

∂Y

∣∣∣∣
Y=H (X)

= 0. (2.1)

Another boundary condition has to be written at the porous surface. The classical
no-slip condition, as required at the solid-fluid interface on an impermeable plate,
leads to the following equation for H (X) (its derivation is similar to that presented
in Appendix A):

H ′′′ +
1

l2c
(−H ′ + θ) =

3Ca

h2
, (2.2)

where lc and Ca are, respectively, the capillary length (lc ≈ 2.8 mm for water) and the
capillary number, defined by

Ca =
ηU

γ
, lc =

√
γ /ρg.

Equation (2.2) and any derivative of its solutions are singular at the contact
line, where H = 0 (Duffy & Wilson 1997). For a non-porous surface, a short-length
regularization is invoked coming either from effective slip near the contact line
(Huh & Scriven 1971), the existence of a pre-wetting liquid film and van der Waals
forces (de Gennes 1984; Hervet & de Gennes 1984) or a ‘diffuse interface model’
(Seppecher 1996). Such a regularization always involves a microscopic cutoff length
(of the order of 1 nm) below which it is claimed that hydrodynamics fails. The Navier
slip condition is then mostly used in numerical simulations investigating moving
contact line problems (Renardy, Renardy & Li 2001). At the solid–fluid interface:
u−U = λN∂u/∂Y at Y = 0 where λN is the cutoff length. With this boundary condition,
(2.2) becomes

H ′′′ +
1

l2c
(−H ′ + θ) =

Ca

H 2/3 + λNH
. (2.3)

Equation (2.3) can be numerically solved and analytically approached. A contact
line is then found to exist as long as the capillary number is smaller than a critical
value, above which a macroscopic LLD film is deposited on the solid (Eggers 2004a).
However, not all the singularities discussed above are suppressed by the Navier slip
condition since the capillary pressure still diverges at the contact line (see Appendix B).

2.2. The case of a porous solid

A porous solid allows for both interfacial slip (first proposed by Beavers & Joseph
1967) and bulk flow. Using the Brinkman equation to describe the flow inside the
porous medium, Neale & Nader (1974) showed that, for a homogeneous porous
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medium, the magnitude of the slip is proportional to the prevailing shear stress:

u|Y=0 − up|Y=0 =

√
k

α

∂u

∂Y

∣∣∣∣
Y=0

, (2.4)

where k is the permeability of the solid, and up the velocity of the fluid in the
porous medium (note that this relation holds both in the laboratory frame and in the
porous plate). α is a coefficient of order one which must be experimentally measured.
It has been identified by Neale & Nader (1974) to

√
µ∗/µ where µ∗ is the effective

dynamical viscosity of the fluid in the porous medium, used in the Brinkman equation.
α was experimentally measured for different porous media and different fluids, and
was found to vary generally between 0.1 and 4. The Brinkman equation produces a
boundary layer (of typical depth

√
k) in the porous medium (Goyeau et al. 2003),

below which the flow follows Darcy’s law.
Now, if the porous plate is thin enough (see Appendix C), the water flow inside the

porous medium is nearly one-dimensional, and is controlled by the pressure boundary
condition at the interface with free water. Finally, let us assume that the plate remains
fully saturated during the entire experiment, which is true for a sufficient withdrawal
velocity. Darcy’s law is

up + U = −k

η

(
∂pp

∂X
− ρgθ

)
, (2.5)

(where pp is the water pressure in the porous medium) and finally the following
equation describes the shape of the steady fluid film under withdrawal (the detailed
derivation is presented in Appendix A):

H ′′′ +
1

l2c
(−H ′ + θ) =

Ca

H 2/3 +
√

kH/α + k
.

If we choose lc as a length scale for both H and X (i.e. H = lch and X = lcx), the
above equation becomes

h′′′ − h′ + θ =
Ca

h2/3 + λh/α + λ2
. (2.6)

where λ=
√

k/lc. h and x are now non-dimensional quantities (and will remain so
hereinafter). Such an equation is similar to those studied for the contact line on a
solid surface, using specific boundary conditions at the solid surface (Hocking 2001;
Eggers 2004a). It has been shown (in the case of a plate pushed into water) that
the details of the regularization do not influence the far-field fluid flow as long as
the cutoff length is small enough (Eggers 2004b). However, an important difference
in our case lies in the typical values of λ involved in porous media (≈10−2 in Daerr
et al. 2003) to be compared with 10−6 for regular solids.

Hadjiconstantinou (2003) and Maurer et al. (2003) use a second-order slip law to
model the flow of gases at large Knudsen numbers. This boundary condition (adapted
to the present notations) reads

u|Y=0 + U = ΛC

∂u

∂Y

∣∣∣∣
Y=0

− αCΛ2
C

∂2u

∂Y 2

∣∣∣∣
Y=0

,

where αC is a positive coefficient of order one, and ΛC is a slip length of the same
order as the mean free path of the gas. If such a boundary condition were used at
the solid–fluid interface in the case of a contact line, again equation (2.6) would be
obtained.
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2.3. Boundary conditions

The limit for large positive values of x is well-defined: the water surface is horizontal
far from the plane, that is

h(x) ∼
x→∞

θx. (2.7)

For the two remaining boundary conditions, two different cases will be studied,
depending on whether a contact line is formed between the water surface and the solid
plate, or if a film of water remains on the solid surface. In the first case, the water
level vanishes at the origin and a contact angle θ0 is usually imposed; the contact-line
set of boundary conditions is

h(0) = 0, h′(0) = θ0. (2.8)

In the present problem, three different contact angles may be defined, depending on
the considered scale. At a scale smaller than the pore size, the microscopic contact angle
is a chemical property fixed once the liquid, the gas and the solid are specified. This
microscopic contact angle may be different from zero in this study. At a scale larger
than the pore size, but smaller than the capillary length, one may define θ0, which will
hereinafter be referred to as the contact angle (θ0). This angle results from pore-scales
effects, and is analogous to the contact angle defined on an heterogeneous medium
(see de Gennes, Brochard-Wyart & Quéré 2005). It may be affected by hysteresis, but
in the present case, only its receding value need be considered. Finally, at the capillary
length scale, an apparent contact angle (θ∗

ap) is defined mathematically as the limit of
the meniscus solution slope when x tends to zero (see § 2.5 and Eggers 2004a).

To perform the present analysis, the contact angle θ0 must be specified. The
equations presented above rely on the assumption that the pore-scale effects, which
are probably intermittent and heterogeneous for a receding contact line, may be rep-
resented by a mean value (namely θ0) at larger scales. Following Raphaël & de Gennes
(1999), we will hereinafter consider that the contact angle θ0 is zero for dewetting on a
porous medium. Although we did not find any proof for it, this assumption may be un-
derstood as follows: if the porous medium remains fully saturated, its surface (around
y = 0) is rough and covered with water. If it is so, the microscopic contact angle is
alternatively positive and negative (depending on which side of a bump the contact
line is), and we consider here as a first approximation that its mean value is zero.

When an infinite film is drawn from the meniscus, the only boundary for the x → ∞
condition known a priori is

lim
x→−∞

h(x) = hf , (2.9)

where hf is a constant solution of (2.6). Note that (2.6) stands only for zero-flux films,
that neither add nor withdraw water from the tank. The general case is presented
is Appendix D. We omit the important case where an LLD film is continuously
elongating with time, a case that was investigated by Hocking (2001). Our study is
therefore relevant for determining the loss of a static contact line solution, without
any information about the dynamics. The stability of the solution as well as the
time-dependent dynamics of a moving meniscus cannot be studied at this stage and
will be the purpose of further work. However, we will see in § 4 that the film solutions
of (2.6) satisfying (2.9) play an important role in the dynamical system describing
our solutions. Finally, for a solution to be acceptable, the water level must always lie
above the porous medium: ∀x, h(x) > 0.



348 O. Devauchelle, C. Josserand and S. Zaleski

2.4. Parameters

The parameter α comes from the detailed modelling of the interface slip flow (see
§ 2.2). Its value, as long as it is positive and of order one, has a very small influence
on the results presented here. Different values have been tested numerically, and the
general patterns of the results (the contact-line transition in particular) remained
unchanged. Mathematically, α does not change the asymptotic behaviour of the
equation for both limit h → ∞ and h → 0, thus it can only affect the local behaviour
of the solution when h is of order λ.

For the sake of simplicity, the coefficient α is fixed to one in the following, except in
§ 5 where it will be fixed to

√
3/2 to allow for analytical computation. The numerical

computations are performed with α =1, and the comparison with analytical results
still holds, providing support to the idea that the wetting transition is almost indepen-
dent of α.

Now, for α = 1, (2.6) is an ordinary differential equation (ODE) with three para-
meters: θ , Ca and λ. In fact, this equation is only a two-parameter ODE: defining
h∗ = h/λ, equation (2.6) becomes

h′′′
∗ − h′

∗ + θ∗ =
Ca∗

h2
∗/3 + h∗ + 1

, (2.10)

where θ∗ and Ca∗ are defined as follows:

θ∗ = θ/λ = θ

√
γ

ρgk
,

Ca∗ = Ca/λ3 =
Uη

√
γ

(ρgk)3/2
.

Equation (2.10) is the one we will study later on, but we will omit the ∗ on h∗ for the
sake of readability. These non-dimensional parameters were chosen because they are
proportional to the two experimental parameters that may be easily and continuously
tuned, namely U and θ . If the permeability of the porous solid is extremely low, both
θ∗ and Ca∗ tend to infinity, as well as the ratio Ca∗/θ∗ = Uη/(θρgk). In this case,
the velocity inside the porous medium is extremely slow compared to U . For the
experimental study of Daerr et al. (2003), the rescaled capillary number Ca∗ is of the
order of 105.

2.5. Hydrostatic solutions

Any solution which respects the boundary condition (2.7) for large x satisfies

lim
x→+∞

h(x) = +∞,

thus for large x, equation (2.10) becomes

h′′′ − h′ + θ∗ = 0. (2.11)

The behaviour of the water surface at large x, hereinafter denoted by h∞, is directly
obtained from (2.11):

h∞(x) = A∞ + θ∗x + (θ∗ − θ∗
ap) exp(−x), (2.12)

where A∞ and θ∗
ap are two constants, corresponding, respectively, to the length of

the dynamical meniscus and to the so-called apparent contact angle (note that the
dimensional apparent contact angle is actually θ∗

apλ). Thus, (2.11) leads to the classical
static meniscus solution (remember that x has been scaled by the capillary length lc).
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Figure 2. Numerical solutions of equation (2.10) for different capillary numbers, from
bottom to top Ca∗ = 0.1, 0.8, 1.0245, 1.2. The rescaled tilt angle θ∗ is fixed to 1.

We may consider that (2.10) holds at any position on the x-axis, even though the
flow may no longer be laminar far from the plate.

3. Numerical results
3.1. Contact line solutions

To seek steady contact line solutions, (2.10) may be solved numerically using a finite-
difference algorithm. In the case of a contact line, two boundary conditions may be
fixed at x = 0 by the contact-line conditions (2.8). The third condition comes from
the flat water level at infinity (2.7) and we end up with the following system:

h′′′ − h′ = f (h), h(0) = h′(0) = 0, h(x) ∼
x→∞

θ∗x, (3.1)

where

f (h) =
Ca∗

h2/3 + h + 1
− θ∗.

We use a shooting method (see Manneville 1990), varying the initial curvature
h′′(0) in order to find the numerical solution which corresponds to the hydrostatic
condition at large x. Some numerical contact-line solutions to (3.1) are presented on
figure 2 for different Ca∗ at fixed θ∗. It is remarkable that contact-line solutions exist
for non-zero capillary number and zero contact angle. Indeed, Eggers (2004a) showed
that for a completely wettable plate (θ0 = 0), no contact line can exist for positive
capillary number. The impregnation law used here as a boundary condition at the
porous plate surface allows for such a counter-intuitive behaviour.

As shown in figure 2, the contact-line zone is somehow stretched as the capillary
number is increased. In other words, the curvature h′′(0) at the origin tends to zero
as Ca∗ tends to a critical value Ca∗

c . Above this critical value, no contact-line solution
can be found by the shooting method. This transition will be clarified below using the
dynamical system associated to (3.1). The disappearance of the contact-line solution
may be represented in a kind of bifurcation diagram, plotting the curvature at the
origin against the capillary number, as shown in figure 3. Notice that, even though the
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Figure 3. Curvature at the origin versus rescaled capillary number, for a contact-line solution
of equation (2.10). The rescaled tilt angle θ∗ is fixed to 1. No solution is found for capillary
numbers higher than Ca∗

c ≈ 1.0247.

curvature at the origin tends to zero as Ca∗
c is approached, the contact-line solution

does not become unrealistic for Ca >Ca∗
c owing to a negative initial curvature, but

rather disappears through a bifurcation. Above the critical capillary number, no
matching exists between the behaviour of the solution at the contact line and the
gravity–capillary solution.

3.2. Film solutions

A zero-flux film solution can exist whenever there is a positive value hf such that
f (hf ) = 0, which occurs as soon as Ca∗ � θ∗. Two major limitations have to be pointed
out for these film solutions: first, we might not be able to match this film solution
to the hydrostatic region with h remaining positive everywhere. Moreover, we restrict
our analysis here to an already established film of zero mass flux, whereas transitory
(Hocking 2001) and finite flux solutions should be considered. In fact, the flux of the
classical LLD film which covers a solid plate at sufficient velocity does not vanish
(Landau & Levich 1942; Wilson 1982), the mathematical differences between LLD
films and zero-flux films are presented in Appendix D. However, the focus here is on
the disappearance of the contact-line solution, and in the following, we will restrict
ourselves to the zero-flux equation. A complete study of the wetting transition should
include the determination of the flux for the film solution. Numerically, above the
critical capillary number Ca∗

c , we have always been able to find a zero-flux film of
thickness hf in the limit x → −∞ that could match to the hydrostatic solution without
crossing h = 0 (see figure 2). Such a solution may be numerically approached, using
a special shooting method described in § 4.1.1. We observed that as the capillary
number is decreased, the film surface is shifted down along the y-axis (see figure 4),
and we may define a second critical capillary number Ca∗

c,2, below which the film
solution becomes negative in some region. Consequently, if Ca∗

c,2 is smaller than Ca∗
c ,

hysteresis may occurs, that is, two solutions, a contact-line one and zero-flux film one,
may coexist for same tilt angle and capillary number.
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Figure 4. Two zero-flux film solutions for θ∗ ≈ 66.62 at Ca∗ ≈ 241.3 (upper) and Ca∗ ≈ 195.5
(lower). The curve below corresponds to point A of figure 7: h(xmin) ≈ 0.

4. Dynamical systems interpretation
4.1. Phase space

In what follows, we interpret and develop the preceding results using dynamical
system theory (Strogatz 1994). Let us consider the phase space V corresponding to
(2.10), that is, �3 with coordinates (h, h′, h′′). Any solution of (2.10) is a trajectory of
V, parameterized by x, which satisfies

X ′ = F(X) =

⎛
⎝ h′

h′′

h′ + f (h)

⎞
⎠ . (4.1)

Some trajectories (the same as in figure 2) are represented in figure 5. Notice that
the film solution (inset) winds exponentially around a fixed point on the h-axis.

4.1.1. Hydrostatic solutions in the phase space

For large x, following the reasoning of § 2.5, equation (4.1) becomes linear:

X ′ =

⎛
⎝0 1 0

0 0 1

0 1 0

⎞
⎠ X −

⎛
⎝ 0

0

θ∗

⎞
⎠. (4.2)

Any solution of (4.2) which satisfies the boundary condition (2.7) is included in a
plane called E∞, which may be parameterized by x and the apparent contact angle
θ∗
ap introduced in § 2.5. E∞ is defined by the equation h′ + h′′ = θ∗.
The solutions of the full equation (4.1) which satisfy (2.7) are included in a two-

dimensional manifold, called W . This manifold tends to E∞ for large h. This allows
us to approximate numerically the zero-flux film trajectories, for which we impose
boundary conditions at x → −∞ and x → +∞. We may indeed use a shooting method
with initial conditions varying along a constant (large) h line on E∞. The boundary
condition at x → +∞ is then approximatively satisfied at any step. The shooting
method provides an approximation of the only solution that remains constant as x

tends to −∞.
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Figure 5. Numerical solutions of equation (2.10) for various capillary numbers, represented
in phase space (projected on the (h, h′′)- and (h′, h′′)-planes). The rescaled tilt angle θ∗ is fixed
to 1. The trajectories correspond to the physical solutions shown in figure 2: for sub-critical
capillary numbers (the three dashed curves), the trajectory starts at a point on the h′′-axis
which corresponds to the contact line, whereas, the solid line corresponds to a film solution,
and thus does not cross the h′′-axis. The inset shows the projection of the film solution on the
(h′, h′′)-plane, at smaller scale.
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Figure 6. Intersection of W (the set of trajectories that tend to a horizontal water surface as
x tends to +∞) with the (h, h′′)-plane. These curves were obtained by a shooting method with
θ∗ = 2. Solid line: Ca∗ = 2.1; dashed line: Ca∗ = 3. The inset shows the solid curve at a refined
scale.

Figure 6 represents the intersection of W with the (h, h′′)-plane defined by h′ =0,
obtained by the shooting method, for two different capillary numbers, above and
below Ca∗

c , for θ∗ =2. We observe numerically that the major effect of an increase
in Ca∗ is a translation in the higher h-direction. The disappearance of the contact-
line solution may be described in the following way: any contact-line trajectory is
embedded in W , and the boundary conditions impose that it starts on the h′′-axis,
consequently, it exists if (and only if) there is an intersection between W and the
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Condition Fixed points hf

Ca∗ <
θ ∗

4
None

Ca∗ =
θ∗

4
−3

2

Ca∗ >
θ ∗

4

3

2

(
− 1 ± 1√

3

√
4Ca∗

θ ∗ − 1

)

Table 1. Existence and values of the fixed points of equation (4.1) (for Q∗ = 0).

Condition Eigenvalues

Ca∗ ∈ Υ (θ∗) a, b, c

Ca∗ ∈ ∂Υ (θ∗) a, −a/2, −a/2
Ca∗ 
∈ Υ (θ∗) a, −a/2 + iΩ , −a/2 − iΩ

Table 2. Eigenvalues of the Jacobian J+
f at the largest fixed point. a, b, c and Ω are real

numbers and

Υ (θ∗) = [(9θ∗3/2)(1 −
√

1 − 1/9θ∗2); (9θ∗3/2)(1 +
√

1 − 1/9θ∗2)].

When the eigenvalues are real, they satisfy: a < 0 < b < c.

h′′-axis. Since the main effect of an increase of Ca∗ on W is a translation along the
h-axis, this intersection disappears above some value Ca∗

c of the capillary number.

4.1.2. Fixed points

A fixed point Xf in phase space corresponds physically to a film of constant height
hf :

Xf =

⎛
⎝ 0

0

hf

⎞
⎠ .

The existence and values of fixed points depend on the parameters θ∗ and Ca∗, as
presented in table 1. In the following, we will focus on the largest fixed point X+

f ,
since it is the only one that may be acceptable physically (that is hf > 0). Let us
linearize (4.1) around X+

f :

X ′ = J+
f (X − X+

f ),

where J+
f is the Jacobian of F evaluated at X+

f , that is

J+
f =

⎛
⎝ 0 1 0

0 0 1

f ′(h+
f ) 1 0

⎞
⎠ .

The local behaviour of solutions around the fixed point depends on the eigenvalues
of J+

f , which are presented in table 2. If the eigenvalues are real numbers, one is
negative and the two others positive. So there is an unstable manifold of dimension
two where the trajectories tend monotonically to the fixed point as x tends to −∞
and a stable manifold S (separatrix) of dimension one. (Note that we stick to the
classical definition (we call stable a manifold where trajectories tend to the fixed
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Figure 7. Second derivative of the film height against the capillary number, for θ∗ = 1. The
solid line corresponds to h′′(0) for the contact-line solution. The dashed line represents the
second derivative of h at the point xmin where in the case of a zero-flux film solution, the film
is thinnest. Large dashes are used if h(xmin) > 0, and short dashes otherwise. Points A,B,C
and D correspond, respectively, to the following values of Ca∗: Ca∗

c,2 ≈ 1.0219, Ca∗
c ≈ 1.0247,

θ∗ and θ∗/4. The film corresponding to point A is plotted in figure 4.

point as the variable tends to +∞) even though in that frame only unstable solutions
are physically allowed.) On the other hand, when the two eigenvalues are complex
conjugate, their common real part is always positive, and the trajectories in the
corresponding unstable manifold winds around the fixed point while diverging from
it at an exponential rate. In physical space, the fluid surface forms damped stationary
waves along the plate (see figure 7). Therefore, the behaviour of W in the vicinity
of the fixed point may also be described by this linear expansion. Depending on
the parameters, W may either be defined over the whole (h, h′)-plane, or tend to the
separatrix S (which ends on the fixed point). In the latter case, W winds around the
separatrix (as shown in figure 6) or tends to it monotonically. These various regimes
are represented in figure 8.

4.1.3. Critical capillary number

At any point on the h-axis, X ′ is parallel to the h′′-axis (see equation (4.1)).
Consequently, the intersection of W with the (h, h′′)-plane (represented on figure 6)
has vertical tangent vectors whenever it crosses the h-axis. This explains the behaviour
of h′′(0) close to the critical capillary number (see figure 3), which may be interpreted
as a saddle-node bifurcation. This property is useful for the numerical determination
of Ca∗

c at a given θ∗: since we know that the second derivative h′′(0) must vanish at the
critical capillary number, we may approximate Ca∗

c by a shooting method which varies
Ca∗ for constant initial conditions (that is, h(0) = h′(0) = h′′(0) = 0). We show in figure 8
the evolution of the critical capillary number with θ∗, together with the diagram
showing the different regimes described above. Notice that since θ∗ is a rescaled
parameter, we have been able to investigate a large range of values, up to θ∗ ≈ 107.

We did not find any reason for the disappearance of the contact-line solution to
coincide with the appearance of the zero-flux film solution as Ca∗ is varied. It may well
be possible that, as W has already intersected the h′′-axis, the zero-flux film trajectory
rolls up around the fixed point without h ever becoming negative. Some numerical
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Figure 8. Behaviour of W close to the largest fixed point J+
f . ∅, no fixed point; +, positive fixed

point; −, negative fixed point; a, spiralling trajectories; b, monotonic trajectories. Continuous
lines delimit the various behaviours. The dashed line represents the critical capillary number
above which the contact-line solution disappears Ca∗

c . Inset (logarithmic scale): asymptotic
behaviour of the critical capillary number for large θ∗ (dashed line) and asymptotic behaviour
computed analytically in § 5 (solid line).

simulations give us confidence that hysteresis indeed occurs (that is, Ca∗
c >Ca∗

c,2):
a slight hysteresis may indeed be observed in figure 7. Again, the present study is
limited to films of zero flux, and other solutions may exist for the same parameter
values. Thus, the hysteresis here observed can only describe a reduced part of the
solutions set.

When the capillary number is decreased from a supercritical value, the height of
the stationary film hf decreases, and eventually the film thickness vanishes at some
point xmin (see figure 7). This point must be a minimum and in that case both h(xmin)
and h′(xmin) vanish, so this film solution is also a contact-line solution. This explains
the change of the sign of h(xmin) observed at point A in figure 7.

The asymptotic behaviour of Ca∗
c at large θ∗ has also been investigated (figure 8).

We find that the critical capillary number behaves asymptotically as a power law of
the tilt angle, that fits to:

Ca∗
c ∼

θ∗→∞
0.3936 θ∗1,4998. (4.3)

This suggest that for high θ∗, Ca∗
c behaves like θ∗3/2.

5. Asymptotic results
In the following section, we describe a rough analytical approach, inspired by

that of Eggers (2004a), which leads to the power law (4.3) for the capillary number
obtained numerically in the previous section.
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5.1. Overview

To determine the dependence of the critical capillary number on the angle, we need to
understand better how the solution near the contact line connects with the free surface
at infinity. We therefore seek to determine the matching between these two domains.
This has actually been done when considering the classical plate-withdrawal problem.
It involves a matching between three regions: one near the contact line, a capillary–
viscous one and the gravity–capillary interface (Eggers 2004a). However, two major
differences arise in the present case compared to the usual problem. First, equation
(3.1) is regular over the whole range h ∈ [0; +∞[, whereas in the usual problem, the
Navier slip condition (2.3) leads to a pressure divergence at the contact line. However,
it has been shown (in the case of an advancing contact line) that the exact form of
the slip law near the contact line does not influence the matching procedure with
the far-field solution of the free surface (Dussan V. & Davis 1974; Eggers 2004b).
The second difference lies in the contact angle condition that we consider to be zero
instead of small but finite (as for solid plates). Such a condition is crucial as it can be
seen from Eggers (2004a) where the solutions are expanded in powers of the small
parameter Ca/θ3

e (θe being the static contact angle). Consequently, we cannot obtain a
proper matching between the behaviour in the contact-line zone (cubic polynomial at
leading order) with the famous logarithmic behavior in the capillary-viscous region:

h′(x) =

[
9Ca ln

(
π

22/3β2x

)]1/3

.

However, we can bypass this difficulty by a slight change in the equations leading
to a single approximation valid over the first two regions (contact-line zone and
capillary–viscous one).

5.2. A two-zone matching

The procedure hereinafter presented is based on the assumption that the linear term
in the right-hand term denominator of (3.1) is not of fundamental importance. In
particular, the coefficient α was arbitrarily set to one at the beginning of this study,
but numerical investigations have shown that it may be set to very different values,
changing the results by only a few per cent. We therefore set from now on 1/α = 2/

√
3

without much change in the equation properties, so that (3.1) reduces to

h′′′ − h′ + θ∗ =
Ca∗

(h/
√

3 + 1)2
. (5.1)

Close enough to the contact line, the film slope h′ may be neglected owing to the
boundary condition (3.1). In addition, close to the critical capillary number, Ca∗ � θ∗

(this is suggested by the asymptotic behaviour (4.3)), and (5.1) becomes

h′′′ =
Ca∗

(h/
√

3 + 1)2
,

which can be solved analytically (as performed by Duffy & Wilson 1997) after the
rescaling

x =

√
3

(3Ca∗)1/3
ξ, h(x) =

√
3(y(ξ ) − 1).

This rescaling leads to Tanner’s problem:

y ′′′ =
1

y2
, y(0) = 1, y ′(0) = 0.
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Its solution may be parameterized in terms of Airy functions Ai and Bi:

ξ = 21/3 Bi(s0)Ai(s) − Bi(s)Ai(s0)

Bi′(s0)Ai(s) − Bi(s)Ai′(s0)
, yin =

1

π2(Bi′(s0)Ai(s) − Bi(s)Ai′(s0))2
, (5.2)

where s0 is an integration constant, and s varies between consecutive solutions of
equation

Bi′(s0)Ai(s) − Bi(s)Ai′(s0) = 0. (5.3)

It was shown in § 4.1.3 that, at the critical capillary number, h′′ vanishes (and so does
y ′′). This property sets s0 to zero and the range for s to [s1, 0[, where s1 ≈ −1.98635
is the largest solution to (5.3). Matching solution (5.2) with the meniscus solution
should provide a condition on Ca∗ and θ∗. At large ξ , the behaviour of yin is

yin = aξ 2 + O(ξ )

at leading order, where a has the following expression:

a =

(
Bi′(0)

21/3Bi(s1)

)2

≈ 0.758947.

The second-order Taylor expansion of h∞ for small x is (see (2.12))

h∞ = A∞ + θ∗ − θ∗
ap + θ∗

apx + (θ∗ − θ∗
ap)

x2

2
+ O(x3).

In order to match yin with h∞, the leading order in the above expression must be
x2, thus

θ∗
ap = 0, A∞ = −θ∗.

Finally, matching the square terms requires that

Ca∗
c ∼

θ∗→∞

1

(2a)3/231/4
θ∗3/2. (5.4)

This fits remarkably well with the numerical estimation (4.3), since 1/((2a)3/231/4) ≈
0.4063 (the above numerical fit gives 0.3936). The matching solution is compared to
a numerical one in figure 9 for a high value of θ∗, and we observe a remarkable
agreement with a reasonably large overlap region. Of course, corrections to this law
are expected at next order. In particular, θ∗

ap = 0 holds only at the first order of the
matching, and it has not been shown here that the apparent contact angle vanishes
at the wetting transition.

6. Discussion and conclusions
In this work, a continuum model of the forced dewetting on a porous material has

been presented. In the framework of lubrication, an ordinary nonlinear differential
equation was derived, close to that investigated by Hocking (2001). Even if the
contact angle θ0 is assumed to vanish, a stationary contact line is found to exist for
low dewetting velocity. Moreover, a transition between this steady contact line and
the deposit of a liquid film must occur (either an LLD film or free-flux film), since
there is a critical capillary number above which no contact-line solution can exist.
The transient mechanism of this transition was not studied here.

In the present study, the critical value of the capillary number above which
no contact-line solution can be observed behaves asymptotically (for small
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Figure 9. Comparison between numerical results (solid line) and the matching presented in
this paper in logarithmic scales. θ∗ ≈ 1886 and Ca∗ ≈ Ca∗

c ≈ 32870. Long dashes, analytical

solution to Tanner’s problem (
√

3(1 − yin)); short dashes, capillary–gravity meniscus (y∞).

non-dimensional slip length λ and small tilt angle θ) as

Cac ∼ 1

(2a)3/231/4
(λθ)3/2.

The critical capillary number does not vanish even though the contact angle is zero.
This comes for the slip condition introduced in § 2, characteristic of porous media.
As expected, when the slip length goes to zero, the critical capillary number also
vanishes, and the result of Eggers (2004a) is recovered.

Another surprising result is the mathematical existence of a family of films that
may be deposited on the plate, different from the classical LLD film. Indeed, the
thickness of these films is not fixed by the boundary conditions. These free-flux films
have never been observed experimentally, as far as we know. We have not studied
their stability yet, but they will be the subject of further study.

Various conclusions can be drawn from our results regarding the erosion experiment
performed by Daerr et al. (2003). First, the existence diagram of the contact line can
be drawn using the experimental values of the physical parameters. In the present
theory, the permeability k of the porous material is crucial, as it is the characteristic
slip length at the solid–liquid interface. The value of this parameter may depend
strongly on the compaction of the granular material (say between 10−12 m2 and
900 × 10−12 m2, respectively, the value measured by Daerr et al. (2003) and the square
of the grain size). Figure 10 presents the critical velocities obtained for these two
extreme values of the permeability. For the lowest permeability, and down to the
smallest withdrawal velocities of the erodible plate, no contact line can exist. On the
other hand, when choosing the largest permeability, the critical speed of the contact
line is of same order as in the experiment.

The flow acts on the granular medium mainly through the bottom shear rate
τ = ∂u/∂Y , which is known to trigger the erosion process (see Charru, Mouilleron &
Eiff 2004). From this shear rate, we can define the Shields number S, which compares
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Figure 10. Critical speed for two values of the permeability k. For each value of the
permeability, a contact line can exist only above the corresponding solid curve. The dashed
line represents constant Shields numbers Sc . The values of the physical parameters used in
this model are those of Daerr et al. (2003): g =9.81 m s−2, ρ =1000 kg m−3, ρg = 2750 kg m−3,

η = 10−3 kg m−1 s−1 and γs = 0.07 Nm−1. The velocity and inclination ranges are those of the
experiment.

the viscous force applied to the grains by the flow, to the gravity force:

S =
ητ

(ρg − ρ)gd
,

where ρg is the density of the grains (this expression stands only for small tilt angles).
Though the erosion process on a granular bed results from discrete and complex
phenomena, classical models assume that it starts at a threshold value of the shear
rate, at which a critical Shields number Sc is defined (Charru et al. 2004). A typical
value for Sc is 0.05 (see among others Fredsoe & Deigaard 1992), but Daerr et al.
(2003) used Sc = 0.12 to fit their data. In addition to this large range of possible
values, note that the critical Shields number is a function of the slope of the bottom:
the more inclined it is, the easier it is for the flow to lift grains, thus the tilt reduces
the value of Sc. The shear rate may be deduced from our model, as a function of the
dimensionless height of the film h:

τ =
U√
k

h − Q∗

h2/3 + h + 1
.

In the case of a contact line (then Q∗ =0), this expression admits a maximum value
τmax = U/(

√
k(1+2/

√
3)) for h =

√
3, that is necessarily reached, since h stretches from

zero to infinity. If the Shields number is assumed to be independent of the tilt angle
of the plate (to first order), S = Sc defines a vertical line in figure 10 (represented
only for k = 900 × 10−12 m2). On the left of such a line, no erosion should occur since
the Shields number is smaller than the critical value, thus to account for the erosion
patterns observed by Daerr et al. (2003) at small velocities, a low value of Sc is
required.

Now, if an LLD film covers the plate (then Q∗ > 0), we are not able to predict
analytically the maximum shear rate exerted on the granular bed. However, a sharp
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decrease of the shear rate can be expected at the transition from contact line to
LLD film, owing to the jump in Q∗. Such a sharp stress variation could provide
an explanation for the transition between the different erosion patterns observed by
Daerr et al. (2003).

At the transition from contact line to LLD film, transient regimes should not be
ignored. They have been studied in the literature for non-vanishing contact angles
(Hocking 2001), and future studies will aim at understanding the case of zero contact
angle, which has been shown here to be quite different.

It is our pleasure to thank Daniel Lhuillier, Pierre-Yves Lagrée, Eric Clément,
Florent Malloggi, Peter Spelt and Jens Eggers for stimulating discussions.

Appendix A. Derivation of the fundamental equation
In the following, equation (2.6) is derived from the two-dimensional Navier–Stokes

equations. X and Y are dimensional and refer to the axis of figure 1. In the lubrication
approximation, and assuming both a permanent regime and small Reynolds number,
the momentum conservation reads

− 1

ρ

∂p

∂X
+ g sin(θ) + ν

∂2u

∂Y 2
= 0, (A 1a)

− 1

ρ

∂p

∂Y
− g cos(θ) = 0, (A 1b)

where u and v stand for the water velocity components, respectively, parallel and
perpendicular to the plate. Equation (A1 b) may be integrated to give

p = ρg cos(θ)(H − Y ) + pL,

where pL is the pressure due to surface tension and H the dimensional water level.
Now, if θ is small enough, the slope H ′ of the free surface should remain reasonably
small, so that H ′′ approximates its curvature, and pL ≈ −γH ′′ (and, similarly, sin(θ) ≈
θ and cos(θ) ≈ 1 at first order). The boundary conditions on u at the bottom and the
top of the film are (see (2.1), (2.4) and (2.5))

u|Y=0 + U =

√
k

α

∂u

∂Y

∣∣∣∣
Y=0

− k

η

(
∂p

∂X

∣∣∣∣
Y=0

− ρgθ

)
,

∂u

∂Y

∣∣∣∣
Y=H (X)

= 0,

thus integrating (A 1a) we obtain

u =
1

ν

(
1

ρ

∂p

∂X
− gθ

) (
Y 2

2
− HY −

√
k

α
H − k

)
+ U. (A 2)

The water flux withdrawn from the bath through the film is

Q = −
∫ H

0

u dY.

In steady state, mass conservation imposes that Q be a constant, thus

γ

ρ
H ′′′ − gH ′ + gθ =

ν (U − Q/H )

H 2/3 + H
√

k/α + k
.
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If H and X are rescaled by lc, the nonlinear equation studied throughout this paper
is obtained:

h′′′ − h′ + θ =
Ca(1 − Q/(Ulch))

h2/3 + λh + λ2
.

Another rescaling is used from § 2.4: h = λh∗. The above equation becomes

h′′′
∗ − h′

∗ + θ∗ =
Ca∗(1 − Q∗/h∗)

h2
∗/3 + h∗ + 1

, (A 3)

where Q∗ = Q/(Ulcλ) and α = 1. In the case of a contact line, no water is removed
from the bath and Q∗ =0. From § 2.4 to the conclusion, the ∗ is dropped from h∗.

Appendix B. Pressure divergence at the contact line
We aim here to demonstrate briefly that the classical Navier slip condition, leading

to (2.3), is not sufficient to eliminate all the singularities at the contact line, even for a
non-vanishing microscopic contact angle (θe > 0). Indeed, the dominant order of (2.3)
(Eggers 2004a; Hocking 1983) near the contact line reads

h′′′(x) ∼ Ca

λNh
∼ Ca

λNθex
,

where h and x are dimensionless (by the mean of the capillary length). In the
lubrication approximation that we have used throughout, the pressure at the plate
then reads

p|y=0 = ρg cos(θ)lch − γ h′′

lc
,

and since h′′(x) ∼ Ca ln(x)/λNθe, the pressure diverges at the contact line. In the
present paper, owing to the permeability of the porous plate, the expansion of h near
the contact line is a third-order polynomial (h ∼ h′′(0)x2/2+(Ca∗ − θ∗)x3/6), and thus
the pressure does not diverge.

Appendix C. Flow in the porous plate
Using Darcy’s law and the conservation of mass, the equation to be solved in the

porous plate is

�pp = 0, (C 1)

where pp is the water pressure in the porous medium, with the following boundary
conditions:

pp|Y=0 = p|Y=0,

∂pp

∂Y

∣∣∣∣
Y=−e

= cos(θ)ρg.

where H , X and Y are the dimensional counterparts of h, x and y. e is the thickness
of the plate. Here, the boundary-layer thickness (

√
k) is neglected, this layer being

modelled by mean of the slip-law presented in § 2.2.
Assuming that the plate is extremely flat, the term ∂2pp/∂X2 can be neglected in

(C 1) and the pressure field is:

pp = cos(θ)ρg(e − Y ) + p|Y=0

from which we can deduce the water velocity just under the surface of the porous
plate.
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Appendix D. Existence of free-flux film solution
Numerical results that show the existence of film solutions to (A 3) for Q∗ = 0

were presented in § 3. This result seems to be in contradiction with the classical
theory of Landau & Levich (1942) where the water flux is fixed by the parameters
and boundary conditions. Specifically, Wilson (1982) presents a rigorous asymptotic
matching between the film part of the solution (valid for x → −∞) and the meniscus
(at large x), showing that a unique value of the flux allows the matching. On the
contrary, we aim to show here that, in addition to the well-known LLD films, there
exists another kind of film solution to (A 3), for which the flux is a free parameter in
a permanent regime.

(Wilson 1982, p. 212) summarizes the link between boundary conditions and
parameters in the following fashion. Equation (A 3) is of third order, so there are
three constants to be fixed, in addition to the flux. One these four degrees of freedom
corresponds to the origin of x, which can be translated arbitrarily. The water surface
becomes flat at large x, so the exponentially growing solution must be ruled out (see
§ 2.5). The only remaining condition is:

lim
x→−∞

h(x) = hf ,

where hf is the thickness of the deposited film. If λhf (noted H in Wilson 1982) is
small enough, two exponentially growing solutions must be ruled out, the flux is thus
fixed. However, as will be shown, this is not the general case, although it is the only
one described by Wilson (1982).

Far from the meniscus in the film region, (A 3) links hf to Q∗:

Q∗(hf ) = hf

(
1 − θ∗

Ca∗
(
h2

f

/
3 + hf + 1

))
. (D 1)

Let us introduce δ(x) = h(x) − hf to linearize (A 3) for δ � hf . At first order, we
obtain

δ′′′ − δ′ − χδ = 0, (D 2)

χ =
Ca∗(Q∗/h2

f − θ∗/Ca∗(2hf /3 + 1)
)

h2
f /3 + hf + 1

.

It can easily be shown that χ has the same sign as dQ∗/dhf . Remembering that
any exponential term with a negative growth rate must be ruled out, the following
rules can be deduced from (D 2):

(i) if χ > 0, two integration constants are fixed to zero;
(ii) else a single constant is fixed to zero.
In other words, the dimension of the unstable manifold Wu (the set of solutions

that tends to Xf for x → − ∞, see § 4) switches from one to two when χ becomes
negative. This result is represented in figure 11. In the (hf , Q∗)-plane, any solution
lies on the curve C defined by (D 1). The LLD film solution is a point on the solid
part of the curve, where χ is positive. On the other hand, when χ is negative (dashed
line), any point on the curve can be a solution a priori. In that case, both the stable
manifold W (defined in § 4) and the unstable manifold Wu have dimension two. In
the general case, for any Q∗, they intersect on a trajectory that is a film solution.
Although we did not strictly prove the existence of such a solution in any case, the
numerical solutions presented in figure 11 give us confidence that this result is quite
general.
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Figure 11. (a) Non-dimensional water flux withdrawn from the bath (Q∗) as a function of the
non-dimensional thickness of the deposited film hf . The curve is dashed if χ is positive, that
is, if the boundary conditions fix Q∗. Any point on the solid part of the curve can represent
a full-film solution. The ratio Ca∗/θ∗ is fixed to 5 here. (b) Three film solutions with different
fluxes Q∗. The letters refers to their representation in the (hf ,Q∗)-plane

In addition to the question of the mathematical existence of free-flux film solutions,
two physical conditions must be respected if such solutions are to be observed in
practice. First, the film thickness has to be positive for any x, which happens at least
in some cases, as can be observed on figure 11. Secondly, the solution has to be stable
in time: this issue has not been addressed yet.

Finally, it should be noted that the present analysis is very general in the lubrication
framework, and does not depend on the specific form of the right-hand side of (A 3).
In particular, the result would be similar without any slip-length hypothesis, as long
as the contact-line solutions are not considered. These free-flux films will be the
subject of future research.
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C. R. Acad. Sci. Paris 299, 499–503.

Hocking, L. M. 1983 The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl.
Maths 36, 55–69.

Hocking, L. M. 2001 Meniscus draw-up and draining. Eur. J. Appl. Maths 12, 195–208.

Huh, E. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid
contact line. J. Colloid Interface Sci. 35, 85–101.

Landau, L. D. & Levich, B. V. 1942 Dragging of a liquid by a moving plate. Acta Phys. Chem.
USSR 17, 42–54.

Manneville, P. 1990 Dissipative Structures and Weak Turbulence. Academic.

Maurer, J., Tabeling, P., Joseph, P. & Willaime, H. 2003 Second-order slip laws in microchannels
for helium and nitrogen. Phys. Fluids 15, 2613–2621.

Neale, G. & Nader, W. 1974 Practical significance of Brinkman’s extension of Darcy’s law –
coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Engng
52, 475–478.
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